
Audit report

Frankencoin

06.02.2023 - 10.02.2023

Table of Contents
Introduction..2
Scope..2
Techniques..2
Findings..3

High..3
H-1 Positions cannot be repaid...3
H-2.1 Missing position check leads to unristrcited minting.....................................3
H-2.2 Missing position check and reentrancy leads to total loss of all challenge
funds...5

Medium...6
M-1.1 Vote reduction in Equity..6
M-1.2 Griefing by preventing users to redeem...7
M-2 Position locked because of stuck challenge...7

Low...8
L-1 MIN_HOLDING_DURATION doesn’t match tests and comments........................8
L-2 DOS in StablecoinBridge minting..8
L-3 Check returns of ERC20 transfer and transferFrom...9
L-4 Improper Verification of Cryptographic Signature...10
L-5 Suggestion spamming...11
L-6 Missing checks for transfer fees..12

Informational..13
I-1 Failing tests..13
I-2 Insecure approval implementation on ERC20..13
I-3 Storage vs memory pointers..14
I-4 Events..14
I-5 Custom Errors..15
I-6 Lock pragma to fixed compiler version..15

Disclaimer...16

 BlockBite Audits Page 1 / 16

Introduction
The Frankencoin is a collateralized stablecoin that is intended to track the value of the Swiss
Franc. It's governance is decentralized, with anyone being able to propose new minting
mechanisms and anyone who contributed more than 3% to the stability reserve being able to
veto new minting mechanisms.

The audit has taken place from the 06th February 2023 until the 10th February 2023.

Disclaimer: While the review is comprehensive and has surfaced some changes that should
be made to the source code, this audit should not solely be relied upon for security, as no
single audit is guaranteed to catch all possible bugs.

Scope
In Scope are all Solidity contracts and the test files for said contracts in the git repository
https://github.com/Frankencoin-ZCHF/FrankenCoin.

The audit covers the files present at this commit hash
0db42977b331bd25a12e3a6da767b7df18a5d66b.

Fixes until and with the commit 295e802234012983dcce573bf98ced970344ee8c are
considered.

Techniques
A comprehensive examination has been performed utilizing Manual Review and Static
Analysis techniques. The auditing process pays special attention to the following
considerations:

 Testing the smart contracts against both common and uncommon attack vectors
 Assessing the code base to ensure compliance with current best practices and industry

standards
 Ensuring contract logic meets the specifications and intentions of the client
 Cross referencing contract structure and implementation against similar smart

contracts produced by industry leaders
 Thorough line-by-line manual review of the entire code base

 BlockBite Audits Page 2 / 16

https://github.com/Frankencoin-ZCHF/FrankenCoin

Findings

High

H-1 Positions cannot be repaid
Positions use the burnWithReserve() function of the Frankencoin contract to burn ZCHF tokens
during their repay routine. Due to a calculation error on line 145 in burnWithReserve()
freedAmount is missing 6 decimal places.

This error then prevents the subtraction on line 147 from succeeding because it would
underflow and therefore revert.

Consider multiplying the result stored in freedAmount with 1’000’000.

Status

Fixed with commit 48062eb360966758153d4369083395c1e271136a

H-2.1 Missing position check leads to unristrcited minting
Launching a challenge against a position with launchChallenge() of the MintingHub doesn’t
check if the position is registered with the Frankencoin contract nor if the MintingHub is the
owner of this position.

This gives the attacker control over the challenge end parameter defined on line 113 but also
the collateral used and transferred on line 108. Combined with the greater than or equal
check in _end() on line 227 means that a challenge can be started and ended within the same
transaction.

 BlockBite Audits Page 3 / 16

https://github.com/Frankencoin-ZCHF/FrankenCoin/commit/48062eb360966758153d4369083395c1e271136a

Keeping in mind that the attacker has complete control over the return values of the position
used in the challenge, the attacker can force the code to land on line 242 within the _end()
function with any arbitrary value the attacker wants.

This results in MintingHub calling the Frankencoin contract’s notifyLoss() function which
transfers ZCHF from the reserves or mints new ZCHF and transfers these to the challenger on
line 244.

Consider the following changes to the code base:

 Adding a check that only registered positions which are owned by the MintingHub can
be used in challenges

 Doing the calculations of Position.notifyChallengeSucceeded() in MintingHub and use
the repay() function to inform the position about the debt change

 Copy on line 225 the challenge into memory (saves gas described in I-3) and move the
deletion of the challenge from line 247 to line 226

 Don’t allow challenges to be started and ended in the same block

Status

Fixed with commit 5b0659ec39a3e7b67599c16d4eb4d5ca1e83474e.

 BlockBite Audits Page 4 / 16

https://github.com/Frankencoin-ZCHF/FrankenCoin/commit/5b0659ec39a3e7b67599c16d4eb4d5ca1e83474e

H-2.2 Missing position check and reentrancy leads to total loss of
all challenge funds
The same entrypoint that leads to H-2.1 can also be used to drain all challenge funds stored in
the MintingHub.

When a challenge is started or a new bid is placed for a challenge the funds at stake
(collateral or ZCHF from bids) are stored in the MintingHub.

So considering that an attacker has full control over a position used in a challenge the
attacker can start bidding with the bid() function on the challenge.

The attacker’s position can first force the code to follow the positive path of the if on line 168
leading to line 171. Here the position switches the address returned by the collateral()
function from some dummy token to something more valuable (e.g. the address of WETH).

Then the MintingHub transfers the returned token with the amount defined in challenge.size
to the attacker.

To completely drain the MintingHub the attacker can either redo the steps for each collateral
or define a small challenge size and use the reentrancy present in the bid() function. The
mentioned reentrancy is caused by a call to the collateral() function of the challenge and after
this call to switch the state (deleting the challenge) on line 173.

 BlockBite Audits Page 5 / 16

Consider the following changes to the code base:

 Adding a check that only registered positions which are owned by the MintingHub can
be used in challenges

 Copy the challenge into memory (saves gas described in I-3) and move the challenge
deletion from line 173 to line 169

Status

Fixed with commit 5b0659ec39a3e7b67599c16d4eb4d5ca1e83474e .

Medium

M-1.1 Vote reduction in Equity
The Equity contract calls the function adjustRecipientVoteAnchor() before each transfer of it’s
FPS token to adjust the voteAnchor for the recipient.

Adjusting the voteAnchor on each transfer make not only transfers more costly but also allows
the attacker to control the anchor set for another user.

This makes it possible for an attacker to reduce the amount of votes a specific user has and
impacts the possiblity for a user to veto.

In tests performed during the audit we were able with only 200 wei of ZCHF and the gas costs
associated with a loop looping 200 times to move the anchor by 200 blocks.

Consider to go with either one token = one vote or something similar to Curve where tokens
are locked to receive voting power (https://resources.curve.fi/governance/vote-locking-boost)
and give users with less funds more votes.

Status

Fixed with commit 7c3701c6186f41bac62759a30b6c7c19844f9cea.

 BlockBite Audits Page 6 / 16

https://github.com/Frankencoin-ZCHF/FrankenCoin/commit/7c3701c6186f41bac62759a30b6c7c19844f9cea
https://resources.curve.fi/governance/vote-locking-boost
https://github.com/Frankencoin-ZCHF/FrankenCoin/commit/5b0659ec39a3e7b67599c16d4eb4d5ca1e83474e

M-1.2 Griefing by preventing users to redeem
The same problem mentioned in M-1.1 where an attacker can move the voteAnchor also
poses an issue in canRedeem().

In this function the voteAnchor is used to determine if a user is allowed to redeem their locked
ZCHF. Allowing an attacker to move the voteAnchor also allows the attacker to prevent a user
from redeeming the locked tokens.

Consider having another mapping to store the first time a user locks tokens and check the
minimum holding duration with this timestamp.

Status

Fixed with commit 7c3701c6186f41bac62759a30b6c7c19844f9cea.

M-2 Position locked because of stuck challenge
Tokens like USDT have a blacklist which prohibit certain addresses to be the source or the
recipient of transfers. In case the challenger ends up on the blacklist between creating the
challenge and the challenge end, the challenge cannot be ended.

Because the transfer of the collateral on line 229 from the MintingHub to the challenger
reverts.

This leaves not only the challenge in a stuck state but also locks the Position which is used by
the challenge. The reason for this is because a Position cannot adjust the price, mint, repay
the debt nor withdraw the collateral while a challenge is active. Leaving the challenger, the
bidder and the position creator as a victim.

Consider adding a timeout to a challenge which is defined after the end where a locked
challenge can be considered failed and deleted while the collateral and bid is consider as a
win to the system.

Status

Fixed with commit fcf81e82aaf73ad00747bc5e80dba0245e1c2060 .

 BlockBite Audits Page 7 / 16

https://github.com/Frankencoin-ZCHF/FrankenCoin/commit/fcf81e82aaf73ad00747bc5e80dba0245e1c2060
https://github.com/Frankencoin-ZCHF/FrankenCoin/commit/7c3701c6186f41bac62759a30b6c7c19844f9cea

Low

L-1 MIN_HOLDING_DURATION doesn’t match tests and comments
MIN_HOLDING_DURATION is currently set to 90 * 10000. The constant is later used to compare
with the current block.number and decides if the user hold their stake long enough.

Taking an average block time of around 12 seconds (Source:
https://ethereum.org/en/developers/docs/blocks/#block-time) this results in around 125 days
instead of the mentioned 90 days.

Consider changing the comment and tests to test for 125 days or lower the factor of 10’000 to
7’200.

Status

Fixed with commit f45517a27abe693ea451cebc5e87d68a7d288218.

L-2 DOS in StablecoinBridge minting
mintInternal() in the StablecoinBridge contract relies on the balance of itself in the source
token (in this case XCHF). An attacker can now transfer XCHF to the bridge using transfer() on
XCHF instead of the bridge functions.

This doesn’t mint new ZCHF but is added to the limit of the bridge.

This behaviour allows an attacker to transfer more and more XCHF until the limit is reached
and no user can mint more ZCHF through the bridge.

Consider keeping track of the minted ZCHF in the stablecoin bridge.

Status

Acknowledged by the client.

 BlockBite Audits Page 8 / 16

https://github.com/Frankencoin-ZCHF/FrankenCoin/commit/f45517a27abe693ea451cebc5e87d68a7d288218
https://ethereum.org/en/developers/docs/blocks/#block-time

L-3 Check returns of ERC20 transfer and transferFrom
Some ERC20 tokens don’t follow the ERC20 EIP (https://eips.ethereum.org/EIPS/eip-20) and
don’t throw/revert if a transfer fails but rather return false. One example of such a contract is
ZRX (https://etherscan.io/address/0xe41d2489571d322189246dafa5ebde1f4699f498).

Consider using the Openzeppelin SafeERC20 utility
(https://docs.openzeppelin.com/contracts/2.x/api/token/erc20#SafeERC20) and replace all
transfers and transferFrom with safeTransfer respectively safeTransferFrom.

Status

Added to the clients governance guidelines.

 BlockBite Audits Page 9 / 16

https://docs.openzeppelin.com/contracts/2.x/api/token/erc20#SafeERC20
https://etherscan.io/address/0xe41d2489571d322189246dafa5ebde1f4699f498
https://eips.ethereum.org/EIPS/eip-20

L-4 Improper Verification of Cryptographic Signature
The EIP-2612 (EIP-20 Permit extension) implementation ERC20PermitLight uses ecrecover
without checking if v is either 27 or 28 and that s is in the lower half order of the elliptic curve.

An attacker can slightly modify the values v,r and s and still produce a valid signature
(Signature Malleability). This problem got fixed

Consider using Openzepplin’s ECDSA library or add the proper checks.

Sources:

 https://omniscia.io/platypus-finance-governance-staking/manual-review/Ptp-PTP

 https://swcregistry.io/docs/SWC-117

Status

Acknowledged by the client.

 BlockBite Audits Page 10 / 16

https://omniscia.io/platypus-finance-governance-staking/manual-review/Ptp-PTP

L-5 Suggestion spamming
The function suggestMinter() in the contract Frankencoin doesn’t have protections against
spamming attacks. Also previously denied minters can be suggested again, because
denyMinter() function deletes the suggestion instead of modifying the suggestions state.

This could lead to a spamming attack proposing a lot of minters leading to slip one through
the cracks. Comparable to a MFA Fatigue Attack.

An application fee is already in place to make such attacks more costly.

Consider adding more safe guards like only a limited amount of suggestions per address,
minimum balance of ZCHF or FPS to hold by the proposer or allowing to deny suggestions in
bulk to make the deny process easier for such attacks.

Status

Acknowledged by the client.

 BlockBite Audits Page 11 / 16

L-6 Missing checks for transfer fees
Tokens like USDT can activate a transfer fee. This means that funds received could be lower
than expected.

Taking the function openPosition() of the MintingHub as an example, this means that the
actual received collateral for a position could be lower than defined with _initialCollateral
leading to an undercollateralized position.

Consider using the positions balance of the collateral instead of _initialCollateral.

Status

Added to the clients governance guidelines.

 BlockBite Audits Page 12 / 16

Informational

I-1 Failing tests
At the current state 3 tests are failing. 2 of them because of the wrong value mentioned in L-
1.

Having a good test suite and a good test coverage is key to find bugs and other issues.
Especially in smart contracts which makes it hard to fix bugs because of their immutable
nature.

Consider fixing these tests and add more to increase the code coverage.

I-2 Insecure approval implementation on ERC20
The implemented ERC20 contracts are following the guidelines and are compatible with the
standard.

Unfortunately the ERC20 token standard has a flaw issuing allowances and allowing an
attacker to spend more than expected by the user. This is caused by the nature of allowances
where as they are not atomic but override the previous value.

As an example consider Alice allows Bob to spend 100 ZCHF, but later wants to reduce it to 50
ZCHF.

Alice creates transaction 1 and sets the allowance to 100 ZCHF for Bob. Then Alice creates
transaction 2 and sets the allowance to 50 ZCHF for Bob. Bob sees transaction 2 in the
mempool and front-runs it to spend the 100 ZCHF. Then Alice’s second transaction gets
approved and Bobs spends an additional 50 ZCHF.

A more detailed explanation can be found here:
https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/
edit

To prevent this problem a best practice has emerged to add 2 new functions to the ERC20
token contracts:

 increaseAllowance(address spender, uint256 addedValue) → bool

 decreaseAllowance(address spender, uint256 subtractedValue) → bool

A reference implementation by Openzepplin can be found here:

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/
dfcc1d16c5efd0fd2a7abac56680810c861a9cd3/contracts/token/ERC20/ERC20.sol#L177-L206

Consider implementing this best practice.

 BlockBite Audits Page 13 / 16

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/dfcc1d16c5efd0fd2a7abac56680810c861a9cd3/contracts/token/ERC20/ERC20.sol#L177-L206
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/dfcc1d16c5efd0fd2a7abac56680810c861a9cd3/contracts/token/ERC20/ERC20.sol#L177-L206

I-3 Storage vs memory pointers
Copying structs from storage to memory is cheaper as soon as there are more reads on the
storage pointer as there are properties in the struct.

To make an example with the function splitChallenge() in the MintingHub contract.

The function accesses 12 times a property of the challenge storage pointer defined on line
120. This leads to 12 SLOADs which are quite costly in gas. The Challenge struct only has 6
properties which copied to memory on line 120 would lead to 6 SLOADs, this reduces the
amount of gas used nearly by half.

To keep in mind is, that writes to pointers in memory (e.g. lines 130 and 131) are not
reflected in storage.

Consider copying structs into memory as soon as there are more reads than the struct has
properties.

I-4 Events
Events are a crucial part in showing and informing the user and other off-chain systems what
is currently going on.

Consider adding more events to reflect and log state changes in the system. For example
when a totalVotesAtAnchor for a user changes, a user redeems their ZCHF from the reserves,
etc.

 BlockBite Audits Page 14 / 16

I-5 Custom Errors
In version 0.8.4 Solidity added custom Errors and the revert keyword. This allows for cheap
reverting with custom error messages and dynamic data in them.

Consider replacing the require statements, especially the one with longer strings, with custom
Errors to safe gas.

Solidity release notes: https://github.com/ethereum/solidity/releases/tag/v0.8.4

I-6 Lock pragma to fixed compiler version
It is seen as a best practice to use a fixed version of Solidity instead of a more broad solidity
pragma. This allows the developers and auditors to test for specific bugs that different
versions of Solidity have.

Consider locking down the pragma definition to a fixed version. Preferably 0.8.4 or above so
that custom errors (I-5) can be used.

 BlockBite Audits Page 15 / 16

Disclaimer
The smart contracts provided by the client for audit purposes have been thoroughly analyzed
in compliance with the global best practices to date w.r.t cybersecurity vulnerabilities and
issues in smart contract code, the details of which are enclosed in this report.

This report is not an endorsement or indictment of the project or team, and they do not in any
way guarantee the security of the particular object in context. This report is not considered,
and should not be interpreted as an influence, on the potential economics of the token, its
sale or any other aspect of the project.

Crypto assets/tokens are the results of the emerging blockchain technology in the domain of
decentralized finance and they carry with them high levels of technical risk and uncertainty.
No report provides any warranty or representation to any third-Party in any respect, including
regarding the bug-free nature of code, the business model or proprietors of any such business
model, and the legal compliance of any such business. No third party should rely on the
reports in any way, including for the purpose of making any decisions to buy or sell any token,
product, service, or other assets. Specifically, for the avoidance of doubt, this report does not
constitute investment advice, is not intended to be relied upon as investment advice, is not an
endorsement of this project or team, and it is not a guarantee as to the absolute security of
the project.

Smart contracts are deployed and executed on a blockchain. The platform, its programming
language, and other software related to the smart contract can have its vulnerabilities that
can lead to hacks. The scope of our review is limited to a review of the Solidity and JavaScript
code and only the code we note as being within the scope of our review within this report. The
Solidity language itself remains under development and is subject to unknown risks and flaws.
The review does not extend to the compiler layer or any other areas beyond Solidity that
could present security risks.

This audit cannot be considered as a sufficient assessment regarding the utility and safety of
the code, bug-free status, or any other statements of the contract. While we have done our
best in conducting the analysis and producing this report, it is important to note that you
should not rely on this report only - we recommend proceeding with several independent
audits and a public bug bounty program to ensure the security of smart contracts.

 BlockBite Audits Page 16 / 16

	Introduction
	Scope
	Techniques
	Findings
	High
	H-1 Positions cannot be repaid
	H-2.1 Missing position check leads to unristrcited minting
	H-2.2 Missing position check and reentrancy leads to total loss of all challenge funds

	Medium
	M-1.1 Vote reduction in Equity
	M-1.2 Griefing by preventing users to redeem
	M-2 Position locked because of stuck challenge

	Low
	L-1 MIN_HOLDING_DURATION doesn’t match tests and comments
	L-2 DOS in StablecoinBridge minting
	L-3 Check returns of ERC20 transfer and transferFrom
	L-4 Improper Verification of Cryptographic Signature
	L-5 Suggestion spamming
	L-6 Missing checks for transfer fees

	Informational
	I-1 Failing tests
	I-2 Insecure approval implementation on ERC20
	I-3 Storage vs memory pointers
	I-4 Events
	I-5 Custom Errors
	I-6 Lock pragma to fixed compiler version

	Disclaimer

